A new scheme is described for pulsed squeezed light generation using femtosecond pulses parametrically deamplified through a single pass in a thin (0.1mm) potassium niobate KNbO3 crystal, with a significant deamplification of about -3dB. The quantum noise of each individual pulse is registered in the time domain using a single-shot homodyne detection operated with femtosecond pulses and the best squeezed quadrature variance was measured to be 1.87 dB below the shot noise level. Such a scheme provides the basic ressource for time-resolved quantum communication protocols.
展开▼